Clinical Research Results Abstract

Abstract ID = 11631

Presented by Gihani Jayaweera on Saturday 27 June 2020

Airway inflammation and oxidative stress in biomass fuel smoke exposed women as assessed by exhaled Carbon monoxide levels

Gihani Jayaweera¹, Savithri Wimalasekera², Sampatha Goonewardena² ¹General Sir John Kotelawala Defence University, ²University of Sri Jayewardenepura

Exhaled carbon monoxide (eCO) is being studied as a biomarker of air way inflammation and oxidative stress. It's utility as a potential marker in indoor air pollution remains incompletely characterized. Biomass fuel (BMF) smoke is considered a major indoor air pollutant worldwide. Aim: To assess the airway inflammation and oxidative stress in a population of women exposed to biomass fuel smoke by means of eCO. Method: Cross sectional study was conducted among non-pregnant women, over 18 years of age, currently using biomass as cooking fuel (n=400). eCO level was measured using Micro^{+™} Smokerlyzer (Bedfont scientific, UK). Two parameters were studied; Exposure index (EI) = hours of BMF use per day × Years of BMF use. El≤150 was categorized as low exposure group (LEG) and El>150 as high exposure group (HEG). Ventilation: Kitchens with both windows and chimneys were categorized as good ventilation group (GVG) while all other types were as poor ventilation group (PVG). Results: Mean age was 46 years±14SD. Mean exposure index was 170±108. Those who were unable to perform the test (n=4) and current smokers (n=8) were excluded. Median eCO was 2 (IQR=1). Majority (52.6%) had low exposures and good ventilation (73.7%). Mann-Whitney U test showed a significant difference between eCO for HEG vs LEG (U=20,989, p = 0.029). Mean ranks were 206 and 183 respectively. There was a significant difference among PVG and GVG (U=12,249, p=0.009). Mean ranks were 217 and 186 respectively. Effect size was smaller for both parameters (0.11 for El and 0.13 for ventilation). Conclusion: These findings indicate that BMF smoke high exposure group and poor ventilation group showed airway inflammation and oxidative stress as measured by eCO.

Declaration of Interest

Authors have no conflicts of interest to declare.

Funded by University of Sri Jayewardenepura research grants (ASP/01/RE/MED/2017/35)